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Abstract—The theoretical and practical aspects of building of joint species-distribution models, a modern
tool for the analysis of ecological communities, are considered. It is shown that it is inappropriate to use the
MaxEnt method or other methods based on the concept of “pseudo-absence” points when the observational
data are quantitative indicators of the population density (in particular, the abundance of species in hydrobi-
ological studies). Contemporary multidimensional models of the joint distribution of communities should
include a set of parameters that assess the impact of the following groups of fixed and random factors on the
species occurrence: (a) the covariates and categorical variables describing the environmental conditions and
characteristics of biotopes, (b) the main indicators characterizing each species and the phylogenetic structure
of communities, (c) the functions of spatial autocorrelation of the data at observation points, (d) the residual
(i.e., not caused by external factors) associativity of species. Analysis of the published data and practical
examples of implementation showed that the mentioned requirements, in general, are satisfied by the meth-
odological platform and the R package Hierarchical Modeling of Species Communities (HMSC). They form
the basis for the construction of multidimensional hierarchical generalized linear models with mixed param-
eters estimated by Bayesian procedure. The main concepts and blocks of the HMSC platform are described,
and the results of models based on the authors’ data and long-term hydrobiological studies of benthic com-
munities in 132 small and medium-sized rivers in the middle and lower Volga basin are discussed. The param-
eters of a set of one-dimensional candidate models for the abundance distribution of the subfamily Prodia-
mesinae (Diptera, Chironomidae) are analyzed, and a map of its forecast range within the region is con-
structed. To illustrate the multidimensional case, a model of the joint spatial distribution of 31 species of
chironomids is constructed and its coefficients are analyzed. A residual correlation graph of statistically sig-
nificant interspecies interactions has been built. It is concluded that the HMSC method and software package
can be effectively used to solve fundamental problems of communities’ ecology: the ways in which the areas
of individual populations, the structure of their communities, and the nature of interspecific interactions
depend the on environmental conditions and methods to predict future trends of these processes in response
to global changes.
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INTRODUCTION
The structure of the spatial distribution of commu-

nities and its relationship with the living conditions of
populations are the most important directions in eco-
logical studies. After the development of the BIOCLIM
package in the 1980s (Busby, 1991), modeling of the
species distribution (Species Distribution Models,
SDM) and environmental niches (Environmental
Niche Models, ENM) became a powerful tool for
(macro)ecological and biogeographic studies and the
assessment of the role of factors affecting the species
distribution (Peterson et al., 2011). These methods
were also very effective in paleoecology, phylogenet-
ics, bioresource management, and wildlife conserva-
tion (Araújo et al., 2019). There is a vast body of liter-
ature on various SDM/ENМ methods, the use of
which has received a great deal of attention in the

works of foreign ecologists (Franklin, 2009; Guisan
et al., 2017) and in a detailed review of Russian col-
leagues (Lisovsky et al., 2020).

Analysis of the species spatial distribution is based
on two different conceptual approaches. The process-
based SDMs (also known as rank models of popula-
tion dynamics; Zurell et al., 2016) explicitly include
model structures and parameters describing the
mechanisms of the main ecological processes in com-
munities. The need to estimate the coefficients of the
rates of reproduction, mortality, dispersal and demo-
graphic stochasticity (Vellend, 2016; Rosenberg et al.,
2020), as well as their dependence on selective data
acquisition processes, make such an approach still dif-
ficult to use, although an accounting of the basic pro-
cesses in communities should be welcomed in all cases
(D’Amen et al., 2017).
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Another approach can be termed correlative, in
that it is based on the identification of statistical
dependences between environmental factors and the
data on the species occurrence.

Dozens of methods of SDM construction have
been described (Norberg et al., 2019). They differ in
many aspects, including the composition of the source
data (“only presence” of species at sampling points,
“presence–absence,” or quantitative assessment of
abundance), structural assumptions of models (a gen-
eralized linear model, support vectors, or random for-
est), algorithms to obtain solutions (with the maxi-
mum-likelihood estimation or a Bayesian approach)
and technical implementation (whether the method is
available as an R package or as an independent soft-
ware product). Works ranking the totality of the con-
structed models according to the degree of their com-
petence and the construction of their ensembles (col-
lectives) are also under way; the predictions of several
models are weighted and averaged in them (Breiner
et al., 2018).

Of the many applied algorithms, we should note
the most commonly used method of maximum
entropy, which is implemented in the MaxEnt pro-
gram (Phillips et al., 2006; Lisovsky and Dudov,
2020). The algorithm predicts the probability of spe-
cies presence at an arbitrary point of the geographical
space based only on the points where it has been
already recorded (РО, presence-only). The use of the
MaxEnt software results in the calculation of an expo-
nential function, the arguments of which are partial
functions of particular predictors (linear, quadratic,
multiple, etc.) with λ coefficients that estimate the
contribution of the corresponding environmental fac-
tor. A step-by-step selection of the optimal model and
the adjustment of λ coefficients is carried out with
allowance for the minimization of the prediction error,
both for the initial sample of PO and for the set of ran-
domly selected points at which, as it is assumed, the
species is absent (pseudo-absence, PA, or “back-
ground” points). The success of the algorithm largely
depends on the selection of the form of particular
functions, the sample size of PA, the prefiltering of the
source data, the use of a correction layer, etc.
(Lisovsky and Dudov, 2020).

The use of random background points is a classical
approach that is known as the Resource Selection
Function (Johnson, 1980), which presupposes a com-
parison of current habitat conditions with estimates of
the availability of necessary resources for the commu-
nity. In fact, it is often very difficult to confirm a spe-
cies absence, and it has therefore been shown that this
approach evaluates not so much the desired probabil-
ity of the presence of a species as the heterogeneity of
the empirical data used. In particular, indicators of
success in the prediction of absence are often deter-
mined by “capricious zeroes,” i.e., those points where
the species simply cannot occur (Hastie and Fithian,
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2013; Guisande et al., 2017). Therefore, if the pres-
ence/absence data are available or if there are espe-
cially quantitative estimates of the population abun-
dance, it is appropriate to apply the adequate statistical
methods.

The SDM models were mainly developed to model
the range of only one species, while it is often neces-
sary to estimate the joint distribution of many species
that form communities (Clark et al., 2014; Warton
et al., 2015). One possible approach is the use of aggre-
gated models of distribution (stacked SDM, SSDM),
in which a set of models for particular species is built
in the first stage and their results are then combined
(Calabrese et al., 2014). In contrast, another general-
ized method of analysis (joint SDM, JSDM) combines
the species level of the model data into one model,
which is simultaneously adjusted to the structure of
the entire community. This makes it possible not only
to identify interspecific associations but also to cor-
relate the patterns obtained with the characteristics of
species (Abrego et al., 2017) and their phylogenetic
features or patterns of coexistence (Pollock et al.,
2014). Lastly, the SDFA class of models (Spatial
Dynamic Factor Analysis; Thorson et al., 2016) con-
siders the distribution of the community structure
under the effect of environmental factors not only in
space, but also in time.

Changes in the patterns of interspecific interac-
tions associated with differences in environmental
conditions were found for a wide range of taxonomic
groups (e.g., Brooker, 2006). Conclusions about the
presence and strength of interspecific interactions are
traditionally made based data from observations of the
species occurrence with different statistical methods:
multidimensional ordination, pair correlation, models
of aggregation and segregation of species, etc. (Legen-
dre, P. and Legendre, L., 2012). An important prob-
lem here is that conclusions about coexistence deter-
mined by interspecific interactions are mixed with
effects generated by joint variation in the species
response to abiotic changes. Since JSDM explicitly
includes the measured ecological covariates, the esti-
mates of species associativity found with their help are
more adequate for identifying true interactions than
“raw” indices of co-occurrence (Warton et al., 2015).

Hereinafter, the JSDM construction technique is
considered based on a version of the Generalized Lin-
ear Mixed Models (GLMMs). According to statistical
terminology, it is interpreted as a multidimensional,
hierarchical, generalized linear model with mixed
parameters based on the Bayesian procedure for their
evaluation. As a working example, we used the results
of long-term hydrobiological studies of benthic com-
munities in small and medium rivers in the middle and
lower Volga River regions (Zinchenko, 2009, 2011;
Golovatyuk et al., 2018). The results of calculations
were obtained with the statistical environment R ver. 3.6
and the HMSC (Hierarchical Modelling of Species
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Communities) package developed by Ovaskainen et al.
In this regard, the methodological material is subse-
quently presented based on a book (Ovaskainen and
Abrego, 2020) and previous articles by this research
group (Ovaskainen et al., 2016a, 2016b, 2017; Tikho-
nov et al., 2017, 2020).

MATERIALS AND METHODS
Description of the HMSC Statistical Model

A typical dataset obtained during ecological studies
of the communities includes a set of species j = 1… ns
identified at multiple ny biotopes (strictly speaking, at
sampling units) i = 1… ny. The generalized linear mixed
GLMM model used can be applied to various indica-
tors of the species abundance yij (presence/absence,
abundance, biomass, coverage, etc.) by including var-
ious communication functions and postulating error-
distribution laws. In the context of HMSC, the
selected data are adjusted with a multidimensional
model, i.e., the number of response variables coin-
cides with the number of species ns. For each species,

a statistical distribution yij ∼ D{Lij, ) is given, where
Lij is the mathematical expectation of the species den-

sity j at point i and  is the variance parameter (not
used in the case of a Poisson or Bernoulli distribution).
In the case of a normal distribution, the value of Lij is
modeled as a linear function of two groups of predic-
tors representing fixed and random factors:

(1)

The first term of expression (1), which models the
effect of fixed factors, is a common form of linear
regression, where xik is the value of the kth environ-
mental variable at point i, k = 1… nc and βjk is the
regression coefficient representing the proportion of
the linear response of the species j to this covariate. To
enable parametrization of the model with sparse data
or rare species, the distribution of regression coeffi-
cients is assumed to be βj. ~ N(μ, V), where vector μ is
an estimate of the average response of the species to
the measured covariates, and the variance-covariance
matrix V corresponds to the variation of particular spe-
cies relative to the mathematical expectation. Herein-
after, the dot in the expression βj. means that the index
k runs through all values from 1 to nc for each fixed j.

The contribution of a set of random factors,
including spatial autocorrelation and interspecific
interactions, is modeled by the second term εij, which
is the sum of the products of nf latent factors and their
loads. Here, ηih, h = 1… nf is the factor value for a
selected point i, and λjh(zi⋅) is the factor loading on the
species j from the latent factor h, which generalizes an
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arbitrary set of predictors zi.. If, in particular, we

accept that , then the structure
of covariances between species εij becomes a function
of the state of the environment determined by the ini-
tial set of variables, the covariates x. Some random
factors may be related to the nested structure of the
research plan (e.g., reservoir basin → river → sam-
pling point), therefore, the model under consideration
is interpreted as hierarchical.

The coefficients of model (1) are calculated based
on data from observations x with the Bayesian meth-
odology, which is based on an iterative process of
adjusting the initial (a priori) estimates of the model
parameters θ and obtaining their resulting (a posteri-
ori) distribution. This process is realized via the con-
struction of long, iterative sequences of several Mar-
kov chain Monte Carlo (MCMC) algorithms, for
which the transition distribution is determined by the
function P(θ|Y, X). The process of modeling is often
quite long and continues until the distribution of the
current values of the process approaches some station-
ary distribution. Visual and formal diagnostic tech-
niques are used to check the convergence of chains.
The cross-validation algorithm is used to check the
adequacy of the model and to compare its different
variants.

Relationship between the Model and the Main 
Theoretical Constructions of Community Ecology

After construction and diagnostics, the parameter-
ized HMSC model (like any JSDM) can be used to
explain the environmental processes in communities
and/or for predictions. Figure 1 shows the relation-
ships between the informational structure of the
HMSC platform and the main tasks of the ecology of
communities. The rectangles include the designations
of the source data matrices, and the ellipses show the
calculated parameters of the model (1), which can be
used in the analysis of the structure of ecological
niches and interspecific interactions in the commu-
nity.

Some of the coefficients βj. ~ N(μ, V) of the
HMSC model describing fixed effects determine the
extent to which the variability of environmental factors
X affects the occurrence and/or abundance of species.
Each species has its own vector of β parameters that
limits a certain volume of hyperspace and, hence, its
ecological niche. However, the niche boundaries are
determined not only by the external parameters but
also by the variability of intrapopulation characteris-
tics Γ (species-specific traits), such as the body size,
morphological features, or mode of nutrition in ani-
mals, the seed size or life form in plants, etc.

The phylogenetic relationship between species is
another important, fixed effect determining the divi-
sion of a community into ecological niches. In order to

=
λ = λ 1

( ) cn
jh i ik jhkk
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Fig. 1. Relationships between theoretical constructions of
the community ecology and THE statistical structure of
the HMSC platform (Ovaskainen and Abrego, 2020).
Matrices of initial data: Y, species abundance; X, environ-
mental factors; T, species properties; C, phylogenetic cor-
relations; Π, research plan; S, geographical coordinates.
Model variables and parameters: L, linear predictors; LF,
fixed effects; LR, random effects; β, species niches; Γ,
effect of species characteristics in niche; ρ, phylogenetic
signal in niche; V, residual covariance in niche; Н, factor
loadings of biotopes; α, spatial scale of biotopes; Λ, factor
loadings of species; Ω, species-to-species association
matrix; Φ, local losses of species loadings; δ, global losses
of species loadings; Σ, matrix of residual variance.

C

T

X

�

V
S

�
�

L

Y

�

�

�

�

LRLF

	




�

�

Species relationship  
with niche
characteristics Spatial 

autocorrelation

Dependence 
on environmental factors

Dependence 
on interspecies interactions
structure niches based on this feature, the phyloge-
netic tree is transformed into a matrix C ns × ns, the
elements of which (cij = 0–1) evaluate phylogenetic
correlations defined as the proportion of the total evo-
lutionary time for each pair of species i and j. HMSC
realizes a phylogenetic correlation model as βf ~ N(μf, W),
where W = ρC + (1 – ρ)I, and the calculated parame-
ter ρ = 0–1 measures the strength of the phylogenetic
signal. If we assume that the niches are completely
phylogenetically structured, then ρ = 1 and the coeffi-
cients of the model have a multidimensional normal
distribution βf ~ N(μf, C). This model has the same
expectation μf for all species, but it predicts that phy-
logenetically close species will, on average, have a
smaller statistical dispersion than phylogenetically
distant species.

The totality of random effects of HMSC (shown on
the right in Fig. 1) simulates the effect of different
biotic or abiotic factors on the variability of the
response Y (without changing its mathematical expec-
tation). In most cases, in the realization of the
research plan, the sample points are associated with
spatial coordinates, and the dependence between the
residues of εij is then due to a phenomenon called spa-
tial autocorrelation (observations at points located
close to each other will be probably more similar than
for sample units located far from each other). The
HMSC models any user-defined autocovariance
BIOLOGY BULLETIN REVIEWS  Vol. 12  No. 1  2022
structure dependent on the distance dij between the
selected points i–j. The exponential function f(dij) =

exp(–dij/α) is most frequently used where the spa-

tial variance ( ) and the scale vector (α) are positive
parameters of the spatial random effect, which is esti-
mated via construction of the model.

If the hypothesis that all species in a community
function independently is rejected, then the totality of
statistically significant positive or negative interactions
between species may eventually affect the individual
abundance Y of each of them. For this reason, it is
advisable to include a random effect in the multidi-
mensional analysis that takes into account additional
information about the species that co-occur “more
often than by accident.” The last phrase indicates the
simultaneous presence of a pair of species at the ith site
with a probability exceeding that expected from the
similarity of the βi. parameters of their niches. The
associativity effect of species in a matrix form is writ-
ten as  ~ N(0, Ω), where Ω =ΛTΛ is an ecologically
limited correlation matrix of species. Thus, this group
of random effects generates residual covariances over
and above those taken into account by fixed effects,
i.e., it distinguishes only those associations that can-
not be explained by ecological covariates xik that are
already included in the model.

Composition of the Initial Data
The construction of HMSC models is considered

on the example of an analysis of hydrobiological sur-
vey data on bottom communities of the middle and
lower Volga basin (Zinchenko, 2011) in different
months of the growing season 1990–2019. The hydro-
biological survey of macrozoobenthos was carried out
in 90 small and 12 medium plain rivers that are tribu-
taries of the Kuibyshev, Saratov, and Volgograd reser-
voirs, including six rivers of the arid region of the
Elton Lake basin (Fig. 2). The medium rivers were
divided into approximately homogeneous sections:
upper, middle, and lower reaches and the mouth.
Each of small rivers was taken as an integral object.
Thus, 132 local communities were studied, in each of
which up to 40 species of macrozoobenthos were iden-
tified with common methods. A total of 1400 samples
were analyzed, and 740 species and taxa above the rank
of species were identified. The specific abundance
(ind./m2) was used to form the response matrix Y.

Thirty environmental factors were monitored
simultaneously at the same sampling points: the
hydrological parameters of the watercourses, water-
quality indicators, the content of the main chemical
components (composition of bottom sediments, oxy-
gen saturation of water, mineralization, etc.), and oth-
ers. Raster tables with a resolution of 2.5' containing
the main meteorological and geomorphological
parameters for the study region were downloaded from
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Fig. 2. Map of the study area, regions of hydrobiological survey (• indicates points where Prodiamesinae larvae were found, and
ο indicates their absence in a sample), and the spatial distribution of the subfamily abundance, ln(ind.)/m2, predicted with the
HMSC model.
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the open-access datasets WorldClim and Environ-
mental Rasters for Ecological Modeling (ENVIREM).
These data were used to model fixed LF and random
LR effects.

RESULTS

Models of the Spatial Distribution of One Species

A set of one-dimensional HMSC models of the
distribution of the abundance of the most important
species and taxonomic groups was constructed based
on data from a study of benthic communities. This
made it possible to draw certain conclusions about
their relationship with environmental factors and envi-
ronmental preferences within the studied region. We
consider the analysis method on the example of the
subfamily Prodiamesinae (Diptera, Chironomidae),
all species of which were conditionally assumed to be
BIO
ecologically identical, and their abundances were
summed up and logarithmized. In total, the species of
this taxon were detected in 41 of the surveyed 132 river
sites.

The full model (m1) was built based on four geo-
physical and climatic parameters, three water-quality
parameters (fixed factors), the geographical coordi-
nates of the sites, and the categories of ground types of
river bottoms (random factors Rivers and Ground,
respectively). An a posteriori distribution of the model
coefficients was obtained based on 30000 iterations of
four Markov chain Monte Carlo algorithms. The
degree of confidence for the coefficients was estimated
with 2.5–97.5% quantiles (Table 1) and additional sta-
tistics, such as the effective chain length and the scal-
ing factor. The relative importance of each parameter
used to predict the magnitude of the response was esti-
mated by their proportion in the decomposition of the
LOGY BULLETIN REVIEWS  Vol. 12  No. 1  2022
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Table 1. Posterior distribution of HMSC-model coefficients for the prediction of the spatial distribution of Prodiamesinae
taxa abundance

Name and designation of factors Average Standard 
deviation

Quantiles of distribution Proportion of response 
variance explained

2.5% 97.5% factor group

Average annual temperature β[MTemp] –0.0532 0.0685 –0.182 0.086 12.16%

43.84%
Precipitation in the driest quarter β[PrecDQ] –0.0148 0.0514 –0.117 0.082 4.36%
Altitude β[Alt] 0.0246 0.0098 0.00553 0.044 22.14%
Roughness index of relief β[TRI] 0.0116 0.0096 –0.0071 0.031 5.18%
Water mineralization β[Miner] 1.5E-05 6.1E-05 –0.0001 0.00014 2.24%

6.64%Ammonium nitrogen β[NH4] 0.0287 0.116 –0.202 0.251 1.99%

Oxygen saturation β[O2] –0.0089 0.0143 –0.0382 0.0193 2.41%

Spatial scale α[Rivers] 2.861 2.98 0 9.83 48.68%
49.52%

Category of grounds λ[Ground] –0.618 0.69 –2.44 –0.01 0.84%
total explained variance for all fixed and random fac-
tors.

The quality of the resulting model was evaluated
based on the residual standard deviation (RMSE =
3.11), the coefficient of determination, which deter-
mines the proportion of the total variance of the
response variable Y (which is explained by the struc-
ture of the model (R2 = 0.613)), as well as the widely
applicable information criterion (WAIC = 9634).

As follows from an analysis of the model coeffi-
cients (Table 1), the biotope characteristics, the
hydrochemical parameters of the water quality, and
the sediment composition account for only 7.5% of
the explained variance. These factors can be consid-
ered statistically insignificant, since the 95% confi-
dence interval of their coefficients includes zero. In
this regard, three more candidate models with fewer
variables were considered:

—(m2) with only seven fixed factors: RMSE = 3.99,
R2 = 0.287;

—(m3) based on the factors characterizing the
environmental conditions in the biotope (Miner, NH4,
O2, and Ground): RMSE = 4.48, R2 = 0.116;

—(m4) with climatic (MTemp, PrecDQ) and geo-
physical (Alt, TRI) fixed factors and a random factor
Rivers, which determines the spatial autocorrelation
dependence: RMSE = 2.184, R2 = 0.854, WAIC =
9262.

Figure 2 shows a schematic map of the study area.
The sampling sites are marked with circles (the points
where Prodiamesinae were recorded are filled in
black). The distribution of the population density of
this subfamily predicted with the m4 HMSC model is
shown in grays of different intensities. The contour
lines mark the isolines of the abundance logarith-
mized (ind./m2).
BIOLOGY BULLETIN REVIEWS  Vol. 12  No. 1  2022
Joint Distribution of the Species Ensemble
The multidimensional HMSC model was con-

structed to estimate the spatial distribution of a com-
munity of 31 species of chironomid larvae. Table 2
presents their names, the frequency of occurrence,
and the phylogenetic tree. A transformation leading to
the χ2-distance was previously performed for the spe-
cies abundance. This is probably the most reasonable
compromise when one takes into account both the
role of the leading components and the contribution of
rare or not numerous taxa (Legendre and Gallagher,
2001).

The variables used as model predictors were the
same as those for the m1 model (Table 1) with the
addition of matrix С of phylogenetic correlations. The
biotope characteristics expressed by the categorical
variable Ground (from 1, pure sand or pebbles, to 6,
black silt and plant residues) were interpreted this time
as a fixed factor. In Table 2, cells for species whose a
posteriori distribution of coefficients is statistically
significantly shifted to the positive region, i.e., in the
direction of increasing corresponding predictor, are
marked in black. The reverse situation, in which a
decrease in the independent variable leads to an
increase in the number of species, is marked in gray.
The proportions of the VR variance explained by the
constructed model and of the overall variance of the
response Y are presented for each group of factors
(geoclimatic and hydrochemical parameters, as well as
the spatial autocovariance Rivers).

The phylogenetic signal ρ has a posteriori distribu-
tion with an average of 0.991 ± 0.00024, which pro-
vides a strong evidence of a very significant effect of
the taxonomic hierarchy in the determination of eco-
logical niches.

The vector of the spatial scaling factor α has a char-
acteristic pulsating sequence of values with averages
α1 = 2.97, α2 = 0.006, α3 = 3.34, α4 = 2.35, α5 = 0.22,
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Fig. 3. Graph of correlations between the abundance of
chironomid species after the elimination of environmental
factors.
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and we have not yet found a reasonable explanation for
this phenomenon.

From the matrix Ω, which determines the residual
covariance relationships between the considered spe-
cies, only those negative or positive associations for
which a posteriori probability is at least 0.95 were
selected. They comprised seven of the 31 species, and
their correlation graph is presented in Fig. 3.

DISCUSSION

Analysis of the coefficients of the HMSC model
makes it possible to determine the priorities of external
factors according to the degree of their effect on the
spatial distribution of the population density of spe-
cies. In particular, the presented results indicate a
strong dependence of the abundance of Prodiames-
inae on the cartographic coordinates and the altitude
above sea level of the surveyed area. This is usually
typical for ranges that limit a clearly defined geograph-
ical cluster. Actually, the larvae of this subfamily are
expressed rheo- and oxybionts and inhabit stony–
sandy biotopes of f lowing rivers of the Arctic-alpine
type (Makarchenko, E. and Makarchenko, M., 1999).
In our study, they mainly occurred in the rivers of the
Bugulma–Belebey Upland of the forest–steppe prov-
ince of the high Transvolga region of Samara oblast
(Fig. 2).

Some other species are characterized by a pro-
nounced dependence on the hydrochemical condi-
tions of the aquatic environment and the biotope type.
For example, Chironomus salinarius and Cricotopus
salinophilus are typical halophiles and inhabit water-
BIOLOGY BULLETIN REVIEWS  Vol. 12  No. 1  2022
courses of the Elton region with high mineralization
and ammonium-ion content. The proportion of vari-
ance in the abundance of these species, which is
explained by hydrochemical parameters, is high and
constitutes up to 71.5%, while the coefficient of deter-
mination R2 reaches 0.985. Similarly, euryoxybiont
species such as Prodiamesa olivacea occur mainly in
rivers on sandy–silty sediments, and their occurrence
therefore depends very little on the effect of geocli-
matic parameters. The proportion of variance
explained by spatial autocorrelation is very high in
most cases, which probably follows from the mosaic
nature of the environment (Hutchinson, 1959), where
particular internal patterns exist.

The low coefficient of determination in many spe-
cies from Table 2 is explained not by the weak possibil-
ities for the construction of HMSC models but by a
number of objective reasons. First, many eurybiont
species relatively evenly occur throughout the terri-
tory; the boundaries of their ranges are unclear, and
there are no distinctly expressed geographical clusters.
Second, we used a very limited list of environmental
covariates x.k, and it is quite possible to suggest that the
leading factor determining the population density of a
species was just not included in this list (this may be an
unaccounted-for hydrochemical parameter, the f low
velocity, or some hard-to-formalize landscape fea-
ture).

In this regard, it is extremely important to select the
composition of environmental predictors that are used
in the model construction. In this case, there is no
general theory, and the selection of potentially
important factors is usually based on the experience
and intuition of the researcher. However, it is not
always reasonable to seek to use as many source vari-
ables as possible just in case. This causes an unjustified
increase in the complexity of the model and, conse-
quently, the risk of retraining, which often leads to a
decrease in the predictive power of the model rather
than an increase. This is confirmed by a significant
increase in the coefficient of determination R2 of the
model (m4) as compared to the full model (m1).

Computer-intensive methods for the selection of
informative variables and constructing models of opti-
mal complexity have recently been greatly developed
(genetic algorithm, resampling, cross-checking (Shi-
tikov and Rosenberg, 2014; Shitikov and Mastitsky,
2017)). The use of these algorithms in HMSC is often
problematic due to the high resource intensity of the
construction of МСМС chains of sufficient efficiency.
The recommendation to use R2 or informational crite-
ria to compare models is not, in the full sense, a test of
scientific hypotheses, since the differences in these
values are not statistically interpretable. For example,
can the decrease in the Widely criterion from 9634 to
9262 be considered essential for the selection of the
candidate model, or is it due to occasional circum-
stances?
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When modeling the relationship between the envi-
ronmental conditions and the species occurrence, the
authors of HMSC closely link their approach with the
concept of an ecological niche. However, the use of
the term “niche” in the context of correlative SDMs is
subject to criticism, because, “in order to model a
niche, it is necessary to understand how the morphol-
ogy, physiology, and especially the behavior of organ-
isms are determined by environmental factors and to
assess how habitat conditions affect the adaptability of
a species (growth, survival, and reproduction)” (Kear-
ney, 2006, p. 186). In the considered example con-
cerning the abundance of Prodiamesinae, the leading
factors, the altitude above sea level and average annual
temperature, are, of course, not directly parameters of
the fundamental niche and are far from being limited
to them, although they indirectly determine the mech-
anisms of ecological processes and characteristics of
biotopes.

Ovaskainen et al. broaden the scope of the funda-
mental niche by including a matrix of interspecific
associations Ω in the analysis that is independent of
environmental factors, thereby restoring the concept
of competitive exclusion and symbiotic relations,
which is important for niche theory. Nevertheless, the
very concept of an “ecological niche” continues to be
rather vague. It is possible to set the hyperspace
dimension and estimate the centers of statistical distri-
butions of all independent variables for each of the
species, but this does not yet make it possible to oper-
ate mathematically with many theoretical construc-
tions of the niche. Such important concepts as “hyper-
space volume” and “packing density” require the pre-
liminary determination of not only average, but also
boundary (i.e. normative), values of niche parameters,
and a quantitative assessment of the differences
between the types of niches and the degree of their
overlap is associated with the justification of a multidi-
mensional distance metric.

CONCLUSIONS

In conclusion, it should be noted that the devel-
oped methodological platform and the package of
functions of HMSC community modeling, in our
opinion, is a universal and complex computing envi-
ronment that allows the integration of many data sets
and provides answers to a wide range of issues. Spe-
cialists in the field of community ecology may be
interested in the following attractive opportunities of
the validated method.

The models of the distribution and subsequent pre-
diction of the species population density are built not
only on the basis of the set of x.k parameters determin-
ing environmental conditions; they also take into
account the variability of characteristic features of the
species γ, the phylogenetic relationship ρ, and the
function of spatial autocovariance α.
BIO
The use of HMSC enables the construction of
SDM models, both at the level of particular species
and collectively for arbitrary communities; in the latter
case, the response prediction is made with consider-
ation of the contribution of interspecific relationships
calculated from the matrix Ω of residual associations.

The method can be applied to different variants of
research schemes (including hierarchical, temporal or
spatial plans) and to many types of empirical data dis-
tributions (presence/absence, counting parameters
and continuous values).
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